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For a conflict-controlled system described by ordinary linear differential equa- 
tions we study the problem of constructing a control method ensuring under con- 

ditions of uncertainty the existence of specified properties on a certain segment 
of the system’s trajectory. We indicate sufficient conditions for the solvability 
of the problem and a method for constructing the resolving controls. The paper 
is related to the investigations in [l- 71. 

1, We consider the controlled system 

x’ (9 = A @> 2 (0 + b (t) u - c (t) v + w (t), t, < t < 6 (1.1) 
u E P (t> C E,,, 2, E Q (t) c E,, 

Here 2 is the n-dimensional phase coordinate vector; vectors u and v are the controls 
of the first and second players, respectively ; P (t) and Q (t) are convex compacta 

continuous in t; matrices A (t), B (t) and C (t) are continuous; w(t) is a given 
perturbation (a Lebesgue-integrable function). The initial state 2 (to) = x0, a finite 

instant ti and a number ‘c E [0, 6 - to] are given. A certain family of functions N 
is defined on the interval [ti - z, 61 . The first player strives to ensure the inclusion 
x8 (8) E N for the trajectory segment x8 (S) = 5 (6 + s), - z < s < 0. At each 

instant t, E [to, 6 - Z] he knows the vector x (t*), while for t, E (6 - 7, +] 

he knows the system’s previous history x (t* + s), s E [b - z - t,, 01. The second 
player’s purpose is the opposite and the information available to him can be arbitrarily 
complete ; he can select any method for forming the control 2’ developing a measurable 
realization v [t]. 

Following [3, 41, the segment zt (s) = 2: (t -!- s), s E [- z, 01 of the trajectory 
x (t) is called a state of system (1.1) at the instant t (we assume zto (a) GE 0, s E [- 
z, 0)) ; the pair {t, J; (s)}, t E [to, +I, x(s) E H, where H is a Hilbert space of 
functions 2 (s) with the norm 

llWllT = (ll~co,ll+ j nwl12ds)I” 
--+ 

llzll= (21’ + ~2’ + . . . + z,,~)“z, z E E,, 

is called a position p . The rule which associates with each position p a set U (p) C 
P (t), convex, closed and uppersemicontinuous in t and z, where t varies from the 
right, is called the first player’s strategy U. Any function zz [tl = 2 [t; pee VI, 1, - 
7 < t < 6, absolutely continuous on [t,, +I, satisfying the condition x [t* + sl = 
2* (S) and, for almost all t E [t,, 91 ,the equality 

x’ [tl = A (t) x ItI + B (t) u It1 - C (d v [t] + W (t) (1.2) 
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where the measurable functions U [t] and 2) [tj satisfy the inclusion 

u ItI E u ft, Zt [sl), 2, (tl 6!!! Q (t) (1.3) 

for almost all t, is called a motion of system (1.1) from the position p* = (t*, $* (s) 1, 
t* > &corresponding to strategy U , A motion defined in such a way exists ( *) . 

Pro b 1 e m 1. Given system (1. l), a position pO = {to, x0 (s) 1 an instant 6 > 
to -i- Ed and a closed, convex and bounded set fi C He Construct an admissible stra- 

tegy U, (p) such that all motions 2 [tl = z It; pot U,] satisfy the inclusion 

Xa rs1 E Iv. 
Problem 2. Construct an admissible strategy U, (p) solving Problem 1 and satis- 

fying the conditions: 

1) for t E Itof 6 - zl U, (t, x (s)) = U, (t, y (s)), 
if Z (0) = y (0); 

2, for if E @- ‘67 @I U* (t, 3 (s)) = U, (t, .f/ (S)), if Z (S) = p (s), 

6-r -t<s<o. 

for any elements 2 (8) E H, y (8) & H. 
Problem 2 can obviously be treated as a mathematical formalization of the original 

control problem. Problem 1 was studied in [5] for a linear controlled system with time 
lag. It is easy to see that the method presented in [5] for solving this problem from the 
standpoint of the extremal aiming principle [3, 41 applied to system (1.1) also solves 
Problem 2. The structure of system (1.1) permits us to make concrete (in comparison 
with [5]) the results obtained in this way and to find effective sufficient conditions for 

the solvability of Problem 2 and a convenient method for constructing the resolving 
strategy. These questions are discussed in the present paper. 

Let t, E [to, Sl and x* (s) E H be given and let u (t) and 0 (t) be some prog- 

rams as functions measurable on [to, 91 for almost ail t , with values in P (t) and 

Q (t) ,respectively. Let x (t) = x (t; {t,, se (s)}, u, d, t, --z < t < 6 be 
a function satisfying the conditions 2 (t* + s) = x* (s); x (t), t, < t < 6 is an 

absolutely continuous solution of Eq. (1.1) when u = u (t) and u = II (t). By the sym- 
bol W (t, N) we denote the collection of all x (s) E H with the property: for any 

program 21 (t) there exists a program u (t) such that 2 (8 + 8; (& 5 (8))~ % v)E 
N (w (t ~ JJ) is the analog of the program absorption sets in [l-5]). 

Let B (t, 6) be an operator acting from W into H and defined as follows: 

1) if t < 6 - a, then 

B(t,@)h=h,= 

h’(O)X(@,Qf j h’(WW+?%W?s= 0 

0, sEI--r,O;l 

*) Questions on the existence of solutions of differential inclusions with aftereffect and 
with initial functions from space H were examined in: Osipov, Iu. S. , Problems in the 
Theory of Differential-Difference Games, Sverdlovsk, Doctoral Dissertation, 197 1. The 

existence theorem for the inclusions in (1.3) was proved therein. 
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2) if tE(fl- z, bI,tnen (6 = 6 - t) 

i 

h’(O)X(%t)+ j! h’(E)X(++E,+% s=o 

II@, ti)h = I21 = 
h(s-6), V&$6,0) 

0, SE[--,---+Q 

Here X (8, t) is the transition matrix of the system z* (t) = A (t)z (t); the prime 

denotes transposition. We consider the functional a, (E, h): 

1) if t < 6 - T, then 

f r h’(s)X-(6 +5E)ds, 

al&h) = c ‘; 

E E Lt, 6 - q 

s ~‘(+w+s,&% EEW--,+I 
E.--e 

2) if tE[@-T, Sl, then 

%(El h) = j h’(s)X(~+s,E)ds, E E it, 61 
C-B 

The following assertion, arising from the theorem on the separability of convex sets in 
& , is valid. 

Theorem 1. 1. z (s) E w (t, N) if and only if 

7 (%t, ~1 = ,,;a:l{- cp (t,. 6, h, 5)) < 0 (1.4 
r. 

Here 

cp (6 6, h, z) = P (6, t, h) + (B (t, 6) h, s> 

PP,&h) = ~P&E,h)dE- SP,(t,5,h)dE-f%V(h)+ 
t t 

8 

s w (0) x (67 E) + at 6, h)l w (9 @I 

~u~kW= ~~~~~{~‘(O)X(B,E)+at(E,h)}B(E)u 

PP ct, E, 4 = y& w (0) x (6, E) + 4 (E, 4) c (5) v 

2, Let us note the properties of sets W (t, iV) needed subsequently. From (1.4) it 
is obvious that the set W (t, IV) is closed and convex in iY for any t E [to, 61 . 
Set W (t, N) is not bounded for t E [to, S) and w (9, N) = iV for t = +J . 

Lemma 2. 1. Theset W (t*, IV) is weakly upper-semicontinuous for any t, E 
ito, Sl ,i.e. inclusion y* (s) E W (t*, N) is valid for any number sequence {ta} 

converging to t, and any sequence {y(k) (s)}, y(k) (s) E W (tk, N), weakly conver- 

ging to y* (8) E H . 
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Proof, Assuming the contrary, we get that an instant t, E [to, 61, a sequence {tk} 

converging to t* and a sequence {&‘) (s)}, y(“J (s) E W (tk, N), weakly converging in 
H to some element Y* (s) exist such that Y* (s) @ W (t*, N). Let v (t) be an arbitrary 
program. By definition a program ulr (t) exists such that the function z(‘) (t) = X (G itk, 

IJ(~) (s)}, Uk, V) satisfies the condition z8 (lr) (s) E N. We now fix an arbitrary program 

u (t) and we form the sequence {uy) (t)} of functions 

u@)(t) = 
u PA t E [h tk) 

l 

u (t) 
k ’ 

Without loss of generality we assume that {u’,“) (t)} converges weakly (in La) to some 

program u* (t), u* (t) E P (t) for almost all t E [to, 61. 
We shall show that the sequence {z(~) (6 f s)} converges weakly in H to x+(6 + s)* 

where z* (t) = z (t; {t*. !I* (41, u*, v). This statement is obvious for t, < ti - t . 
Let t, > 8 - z. In this case it suffices to show that 

0 0 

A= 
s 

h’ ce - BJ Y(k) (E) dE - 
s 

h’ (E _ 6,) y+ (s) ds - 0 as k - 00 
++$ --+I4 

where 

8, = 
‘fr - tk’ t,E[o -$761 

r, t,<t?--2 

The following equality is valid: 
0 

A= s h’ (4 - 6,) (Y(') (4) - Y* WI dt + (2.1) 
--rSh 
0 

s ih’ (t - 6,) - h’ (4 - 8,)) Y(') (5) dE 
--+-FL 

Here the first integral in the right-hand side tends to zero since {I/(“) (s)} + y (s) weakly 
in H. Applying the Cauchy inequality and allowing as well for the boundedness of 
{@) (s)} and for the convergence of the integral 

0 

s 
]) h’ (C - Bk) - h’ (t - 8,) I$ dt 

-7$6* 

to zero, we get that the second integral also is zero in the limit. Taking into account 
the weak closedness of set N, we have xi (s) E N. This contradicts the assumption be- 
cause program v (t) is arbitrary. The lemma is nroved. 

Let y (a; h, t) be the element of w (t, N), closest to h = h (s) in H . The 
existence and uniqueness of such an element follows from the convexity and closedness 
of set W (t, N) in i?? [S]. Following [4], we say that the system of sets w (t, N), 
t, < r < 6 is strongly u-stable if W (t, N) # @, Vt and the following condition is 

satisfied: for any t, E [to, ti), t* E (t*, 61, 2* (s) E w (t, N) and program 

ZJ (t) a program u (t) exists such that 2 (t* + S; {t*, Z* (s)}, U, V) EW (t*,N). 

Condition 2. 1. The system of sets W (1, N), to < t < 6, is strongly u-stable. 

The validity of the next statement can be established by means of Lemma 2.1. 

Lemma 2.2. Under Condition 2.1 the element g (s: h, t) is weakly right-continu- 
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ousin Yforany hEH,i.e. 

lim (y (s; h, t + At), q Cd> = <Y (s; h, t), q (4) 
At-e-0 

for any instant t E [t,, 61 and any element q (8) E H . 

Definition [3]. A function U, (t, x (s)) of the form 

u, (t, 5 (~1) = {n, (Y (0; z (s), t) - x (0)) B (t) u, = 

max (Y (0; J: (4 0 - x (0)) B (0 u 
ueJ’(t) 

is called an extremal strategy U, . 
Relying on Lemmas 2.1 and 2.2, we can verify the validity of 
Theorem 2. 1. Under Condition 2.1 the strategy U, (t, x (S)) is admissible. 
From Lemma 5 in [6] and Theorem 2.1 there obviously follows 

Theorem 2. 2. Let the initial position be such that x,, (s) E W (t, N). Under 

Condition 2.1 the extremal strategy 27, solves Problem 1 and, consequently, by virtue 
of the structure of the sets W (t, N) , solves Problem 2. 

3. We indicate a method for finding the element y (s; x, t). On the basis of Theo.- 
rem 1.1, the weak continuity in H of the functional y (6, t, z) (1.4) and the minimax 

theorem [9] we can prove 
L e m m a 3, 1. Let the functional p (6, t, h) be convex in h. and let W (t, N) # 

@. w (t, iv) 11 s,. (Z (s)) # @ if and only if the inequality 

max {- p (6, t, h) - max 
II hll, < 1 

(B(t, 6, h, x)> < 0 (3.1) 
UES,W)) 

is satisfied. Here s, (z (s)) is a closed sphere in H with center at x (S) and radius r. 
Inequality (3. 1) is equivalent to the inequality 

max {-p (6, t, h) - (B (t, 6) h, x) - 
hEF,(t) 

(3.2) 

Because the functional to be maximized in (3.2) is weakly continuous in h and the set 

F, (t) is weakly compact, the maximum in (3.2) is achievable. It cannot be achieved 
on the element h,, II B (t, 6) h, 115 = 0 , since then (1.4) is satisfied, which contra- 
dicts the condition x (s)E W (t, N).I n such a case (3.1) is equivalent to 

Pl (6, 6 4 = h~axI{-p (6, t, W - @ 0, 6) 4 4 - r II B 0, (3.3) 

W+)<O . 
F 0) = {h E H 1 11 B (t, 6) b IIT = 1, 11 h Ur < I} 

The smallest value of r > 0 for which (3.3) is satisfied, is exactly the distance from 

z (S) to w (t, Iv) 

I 

Pl(*.,t,4, ILl(~,k4>0 
F,, = 

0, Pl(~,t,~)\<O 

Let h, = h,, (t, 6, X) be the element of space H.on which the maximum in (3.3) is 
achieved (the uniqueness of B (t, 6) h, follows from the uniqueness of the element 
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clceest to 2 (s) in W (t, N)). It is clear that the element Y (8; 2 (s), i$ satisfies 
the maximum condition 

a (t, 3) fho Y (3; 5, t>> =vEyy~(s))<B (t, 6) h,, y> 
’ r0 

and, consequently, equals ;~a B (t, @) h, -I- z (8). Thus, there holds the 
Theorem 3. 1. For t = TV let W (t,, N) _it @ and 2 (s) @Z w (TV, N) and 

let the ~nc~onal p (8, $, ?z) be convex in rib ; then 

Y (% 2, t1) = rp (tl, @) ho + 5 (4 

4. We indicate the sufficient conditions for the nonemptine~ and strong u-stability 
of sets w (t, iv). We introduce the sets 

T 0, z) = @a EZ N I II h, II?: < 1, y (9, t, 4 = --cp (6, t, hp 4) 

a @) = {t E l&p @I, 5 63 H 11 s j/T < a, y (6, t, 4 > 11 

It can be verified that the sets T (t, cc) and Dl (K) are weakly closed in space H 
and T (t, a?) is weakly upper-semicontinuous in t and x. 

Condition 4, 1. For any vector 2)” E v (8) we can find a vector u* E P (t) 
in the region y @, t, x) > 0 such that the inequality 

9 0, n*, 21*, 12)<0 

is satisfied ~rnul~e~~y for all elements b E T (t, z) , Here 

4 (t, u, 21, la) = PU (t, t, h) - pv (t, t, b) + {Ja’ (0) x 

x (6, t) + a, 0, la>> c 0) v - (h’ (0) X (6, t) + a, (6 la)> B (t) u 

We consider the system of sets (G is some finite set from H) 

T (&, +, rl, G) = ,y, T 0,~) 

It- t*i<% ‘;<s-z*? 4f>K% 4fEG 

L e m m a 4. 1, Let Condition 4.1 be fulfilled ; then for any number cz > 0 and a 
finite set G c N we can find a number q (cc, G) > 0 and a vector u* E P (t*) 
SLI& that the inequality 

max max $ (t*, u*, v, hf <a 
ac~Qtt,) k3’fn) 

T b-d = T (tw x*, rl, G) 

holds in the domain Dr (K) . 
The lemma’s proof follows from Condition 4.1, the conti~ity of functional $ (t, a, 

o, h) and the weak upper-semicontinuity in t and 2 of the sets T (t, CC). 
Relying on Lemma 4.1, we can verify the validity of 
Lemma 4.2. Let Condition 4.1 be satisfied. Then for a number a > 0 we can 

find a number q (a) > 0 such that for any program zt* (t) we can find a program 
u* (t) ensuring the inequality 

Y (fi, t, + 6, 5 (t, + 6 + s; {t** 2*), a*, v*)) 6 

Y (@? t*, z*) + CL6 t hP 

h=sup{g(t,u,v,h)JtE[t,,61, uEP{t), vEQ(t),~qi,f~) 
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with 6 < for any position (t*, 2, (s) } E Dr (K). 
By the symbol W, (t, N) we denote the set of those and only those elements z (s) e 

H which satisfy the inequality y (8, t, z) < e. 
Lemma 4, 3. Let Condition 4.1 be satisfied and let w,, (to, N) # @ for some 

E = e, > 0. Then the sets WC* (t, N) are nonempty for all t E It,, b] and are 
strongly u-stable. 

As a matter of fact, let there be given an arbitrary instant tl E [to, 91, an element 

Q (s) E K* @it W , a number 6 E (0, 6 - &I, a program 81 (t> and a sequence 
of numbers pi 3 + 0. By means of Lemma 4.2 we can show the existence of programs 
Ui (t) such that 

Y @I t1 + 6, 5 (4 -t 6 + 5; {tl, ql; %, q)) < a, 

The nonemptiness of sets WC* (t, N> is proved similariy. 
Using Lemma 4.3 and the proof plan for Theorem 2.2 from [5], we can verify the va- 

lidity of 
T he ore m 4. 1. If W (to, ii”) # St, and Condition 4.1 is satisfied, then the sets 

W (.$, N) are n~empty for all t E It,, S] and are strongly u-stable. 
Corollary 4. 1. Let W (to, N) + # and let the maximum in(1.4) with y(B, 

t, z) > 0 be achieved on a unique ta ; then the sets w (t, N) are nonempty for t E 
[I!,, S] and are strongly u-stable. 

Corollary 4.2, Let W (to, N) # r$ and let the functional p (8, t, h) be con- 
vex in jb; then the sets W (t, N) are nonempty for all t E It,,, 61 and are strongly 
a-stable. 

From Theorems 2.1, 2.2 and 4.1 follows 
Theorem 4.2. Let Condition 4.1 (or the hypotheses of Corollaries 4.1 and 4.2) 

be satisfied and let y (@, t,, so) < 0. Then the strategy U, extremal to sets W (t, 
jQ solves Problems 1 and 2, 

N o t e 4, 1. From the statement of Problem 2 the first player constructs his own con- 
trol for t > 6 - z on the basis of some previous history of the system’s motion. The 
question arises to what extent the knowledge of this previous history is necessary for the 
solvability of Problem 2. ln other words, under what conditions can Problem 2 be solved 
in the class of strategies U (t, z), where x e E, and the set tr (t, z) is once again boun- 
ded, convex and up~r~rni~~~u~s with respect to inclusion in t (from the right) and 
5. It can be shown that Problem 2 has a solution in the class of strategies v(t, z), x E E, 
if and ouly if there exists a system of sets ~1 (t), 6 - 7 < t Q @, convex, closed and 
upper-semicontinuous in t, strongly u-stable in the sense of [l], such that for any func- 
tion cp (t) E H, cp (t) E Wl (0, the inclusion cp (t) E iV is valid for almost all t E Ii? - 

r, 61. 
The author thanks III. S. Osipov for posing the problem and for valuable advice, 
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The analysis of equations of gyroscopic systems almost always necessitates the 

separation of fast nutation motions from those of slow precession. Simplified 
equations for the determ~ation of these two kinds of motion can be obtained by 
various means [l]. The method of fractional analysis [Z] used here for formaliz- 
ing the passing to precession equations is based on the combination of methods 
of the theory of similarity and dimensionality with asymptotic methods of the 
theory of differential equations. The asymptotic behavior of solutions of com- 
plete equations of the gyroscopic system motions is investigated in the case in which 
the ratio of characteristic times T, and Tn of nutation and precession motion 
components tends to zero. 

Definition. Equations whose solutions for the slow components of motion represent 
for times of order Tp the zero order approximation with respect to the small parameter 
p = T, J Tr, , where T, and la are the characteristic times of nutation and preces- 
sion components, respectively, are called precession equations of gyroscopic systems. The 
exact meaning of this definition is made clear subsequently, 

Let us briefly consider the problem of passing to precession equations. Some of such 
problems were considered earlier in [3, 41, 

The general equations of gyroscopic systems are of the form [l]: 


